Zinkorganische Phosphaniminato-Komplexe mit Heterocuban-Struktur*

Matthias Krieger^a, Robert O. Gould^b, Klaus Harms^a, Simon Parsons^b, and Kurt Dehnicke^{*a}

Fachbereich Chemie der Universität Marburg^a, Hans-Meerwein-Straße, D-35032 Marburg, Germany

Department of Chemistry, The University of Edinburgh^b, West Mains Road, Edinburgh EH9 3JJ, United Kingdom

Received July 22, 1996

Key Words: Organo-zinc compounds / Phosphaneiminato complexes

Organo-Zinc Phosphaneiminato Complexes with Heterocubane Structure

The organo-zinc heterocubanes $[ZnR(NPMe_3)]_4$ with $R = CH_3$ (1) and n-C₄H₉ (2) were prepared by the reaction of $[ZnBr(NPMe_3)]_4$ with MeLi and *n*BuLi, respectively, in hexane solution. In a similar reaction of *n*BuLi with $[ZnI(NPMe_3)]_4$ the phosphaneiminato complex $[Zn_4I(nBu)_4(NPMe_3)_3]$ (3) is formed. 1–3 were characterized by IR, NMR and MS spectro-

Die von den Metall(II)-halogeniden abgeleiteten Phosphaniminato-Komplexe $[MX(NPR_3)]_4$ mit M = Mn, Co, Ni, Zn und X = Cl, Br, I sowie mit R = Me, Et bilden nach Kristallstrukturuntersuchungen Heterocuban-Strukturen aus, die sehr stabil sind und in denen die N-Atome der NPR₃-Gruppen und die Metallatome die Ecken nur wenig verzerrter Würfel besetzen^[1-3]. Die an die Metallatome gebundenen Halogenliganden sollten sich durch organische Reste ersetzen lassen. Am Beispiel der Synthese des sehr reaktionsfähigen Mangan-Komplexes [Mn(nBu)(NPEt₃)]₄^[4] haben wir dies unlängst zeigen können. Wir berichten hier über Methyl- und n-Butyl-Derivate entsprechend aufgebauter Zinkverbindungen. Zink- und cadmiumorganische Phosphaniminato-Komplexe erhielten Schmidbaur und Jonas durch Umsetzung von Metalldialkylen MR_2 (M = Zn, Cd; R = Me, Et) mit Phosphaniminen HNPR₃^[5]. Aus Molmassebestimmungen und vergleichenden Pulverdiagrammen schlossen die Autoren auf Heterocuban-Strukturen, was wir bestätigen können. Vom Zink sind darüber hinaus Heterocubane mit μ_3 -OR- und μ_3 -SR-Brückenliganden bekannt^[6].

Ergebnisse

Zur Synthese der organisch substituierten Phosphaniminato-Komplexe $[ZnR(NPMe_3)]_4$ mit R = Me (1) und *n*Bu (2) sind wir von dem Bromoderivat $[ZnBr(NPMe_3)]_4$ ausgegangen, das sich in Anlehnung an die entsprechende Iodoverbindung^[3] durch Einwirkung von überschüssigem Me₃-SiNPMe₃^[7] auf Zinkbromid in Gegenwart von Natriumfluorid bei 200 °C herstellen läßt^[8]. Suspensionen des Bromids reagieren mit den äquivalenten Mengen Methyllithium in siedendem Hexan/Diethylether bzw. mit *n*-Butyllithium in siedendem *n*-Hexan gemäß Gl. (1) unter Substitution.

$$[ZnBr(NPMe_3)]_4 + 4 \text{ LiR} \rightarrow [ZnR(NPMe_3)]_4 + 4 \text{ LiBr} \quad (1)$$

1: R = Me
2: R = nBu

scopy, and by crystal-structure determinations. 1 and 2 possess heterocubane structures in which the zinc atoms are linked via μ_3 -N bridges of the phosphaneiminato groups, and all bond angles in the $\rm Zn_4N_4$ core are close to 90°. A distorted heterocubane structure is observed for 3 with one of the NPMe_3 moieties replaced by an iodine atom.

1 und 2 werden als farblose, sauerstoff- und feuchtigkeitsempfindliche Kristalle erhalten. In den Massenspektren (70 eV) lassen sich als schwerste Fragmente die um jeweils eine Alkylgruppe ärmeren Ionen $[Zn_4Me_3(NPMe_3)_4]^+$ (m/z =667) und $[Zn_4(nBu)_3(NPMe_3)_4]^+$ (m/z = 793) mit großen Intensitäten nachweisen. In den ³¹P-NMR-Spektren zeigen die Komplexe in C₆D₆-Lösung nur je ein Singulett bei $\delta =$ 13.87 (1) und 13.55 (2). Sie liegen damit in dem Bereich, der auch für die mit den NPR₃⁻-Liganden isoelektronischen, nicht koordinierten Phosphanoxidmoleküle OPR₃ angegeben wird^[9]. Im Vergleich zu $[ZnBr(NPMe_3)]_4$ ($\delta =$ 29.35^[8]) entspricht die Hochfeldverschiebung einer Verstärkung der Abschirmung des Phosphorkernes, was mit den stärker polaren Zn-N-Bindungen und den kurzen P-N-Bindungen (s.u.) korreliert.

In den IR-Spektren treten in Übereinstimmung mit der hohen Symmetrie der Heterocubane 1 und 2 (s.u.) jeweils nur eine v(PN)-, v(ZnC)- und v(ZnN)-Valenzschwingung für 1 bei 1106, 627 und 482 cm⁻¹, für 2 bei 1111, 588 und 485 cm⁻¹ auf, die als dreifach entartete Schwingungen anzusehen sind. Die Lage der PN-Valenzschwingung ist mit Werten ≥1110 cm⁻¹ noch kürzerwellig als im Spektrum von [ZnBr(NPMe₃)]₄ (1081 cm^{-1[8]}), was mit den sehr kurzen P-N-Bindungslängen von etwa 155 pm korreliert (s.u.), die damit am unteren Ende des für P=N-Doppelbindungen angeschenen Bereichs von 155-164 pm^[10] liegen. Dagegen finden wir v(ZnN) etwas längerwellig als im Bromoderivat (498 cm^{-1[8]}), was für etwas stärker polare Zn-N-Bindungen in 1 und 2 spricht. Die Zn-C-Valenzschwingungen in den IR-Spektren von 1 und 2 sind im Vergleich zu Methylzink-halogeniden und Methylzink-alkoxiden, die im Bereich von 530-550 cm⁻¹ liegen^[11], deutlich kürzerwellig, was gut zu den recht kurzen Zn-C-Bindungslängen in 1 und 2 paßt (s.u.). Ähnliche Frequenzlagen für die Zn-C-Valenzschwingungen wie in 1 und 2 werden auch für [ZnEt(NPh2)]2[12]

Chem. Ber. 1996, 129, 1621–1625 © VCH Verlagsges

FULL PAPER

mit 620 und 518 cm⁻¹ sowie für [ZnMe₂(TMEDA)]^[13] mit 565 cm⁻¹ angegeben.

Überraschend verläuft die Alkylierungsreaktion mit *n*-Butyllithium bei Verwendung des Iododerivates $[ZnI(NPMe_3)]_4^{[3]}$, bei der wir nach der für Gl. (1) beschriebenen Prozedur den Komplex $[Zn_4I(nBu)_4(NPMe_3)_3]$ (3), wenn auch nur mit geringer Ausbeute, als farblose, oxidations- und feuchtigkeitsempfindliche Kristalle isolieren konnten. Im Massenspektrum von 3 (70 eV) läßt sich als schwerstes Fragment $[Zn_4(nBu)_2(NPMe_3)_3]^+$ (*m*/*z* = 646) ermitteln.

Entsprechend der gegenüber den symmetrischen Heterocubanen 1 und 2 reduzuierten Symmetrie von 3 ist das IR-

Abb. 1. Ansicht der Struktur von 1 mit der Atomnumerierung (ohne H-Atome); gemittelte Bindungslängen [pm] und -winkel [°]: Zn-N 208.8(2), Zn-C 199.8(3), P-N 155.6(3), P-C 178.9(4), Zn \cdots Zn 297.2(1); N-Zn-N 89.36(9), Zn-N-Zn 90.61(11), C-Zn-N 125.67(13), Zn-N-P 124.83 (12), N-P-C 114.3(2)

Abb. 2. Ansicht der Struktur von 2 mit der Atomnumerierung (ohne H-Atome); gemittelte Bindungslängen [pm] und -winkel [°]: Zn-N 208.8(5), Zn-C 198.6(8), P-N 155.3(6), P-C 181.2(9), Zn \cdots Zn 297.0(1); N-Zn-N 89.3(2), Zn-N-Zn 90.8(2), C-Zn-N 125.8(3), Zn-N-P 124.7(3), N-P-C 113.9(4)

Spektrum bandenreicher. Zwar beobachten wir nur eine schr starke, allerdings konturierte Bande für v(PN) bei 1070 cm⁻¹, jedoch zwei Zn–N-Valenzschwingungen bei 526 und 480 cm⁻¹ sowie zwei Zn–C-Valenzschwingungen bei 597 und 581 cm⁻¹, deren Frequenzlagen vergleichbar mit den Spektren von 1 und 2 sind.

Kristallstrukturanalysen

Tabelle 1 enthält die kristallographischen Daten und Angaben zu den Strukturlösungen^[14]. Die Molekülstrukturen von 1 und 2 sind in den Abbildungen 1 und 2 wiedergegeben.

Beide Verbindungen haben Heterocuban-Strukturen, in denen die Zink- und die Stickstoffatome der Phosphaniminato-Gruppen an den Ecken nahezu idealer Würfel angeordnet sind. Die Zn-N-Zn-Bindungswinkel in 2 betragen im Mittel 90.8°, die N-Zn-N-Winkel entsprechend 89.2°. Im Methylderivat 1 weichen diese Winkel mit 1.55° und -1.28° etwas stärker von der idealen Würfelstruktur ab. Auch die Bindungslängen unterscheiden sich in 1 und 2 nur innerhalb der Standardabweichungen voneinander, so daß der Wechsel von der Methyl- zur n-Butyl-Verbindung nur marginale Änderungen bewirkt. Die Zn-C-Abstände sind mit den Mittelwerten von 199.8 pm in 1 und 198.6 pm in 2 deutlich kürzer als die Summe der tetraedrischen Kovalenzradien von 208 pm^[15]. Sie sind aber etwas länger, vergleicht man sie mit dem Zn-C-Abstand in [ZnMe(OMe)]₄ [195(3) pm^[6c], worin die Zinkatome ebenfalls Koordinationszahl (KZ) vier haben. Der Einfluß der Koordinationszahl scheint auf die Zn-C-Bindungslänge von Alkylzink-Verbindungen allerdings nur geringen Einfluß zu haben, wie die Abstände in $ZnMe_2$ mit KZ = 2

Abb. 3. Ansicht der Struktur von 3 mit der Atomnumerierung; ausgewählte bzw. gemittelte Bindungslängen [pm] und -winkel [°]: Zn1-I 298.6(3), Zn2-I 297.1(3), Zn3-I 293.9(3), Zn4-N 212(2), Zn1-N 205(2), Zn2-N 203(2), Zn3-N 202(2), Zn-C 200(2), P-N 158(2), P-C 178(2), Zn4-Zn 293.3(3), Zn1,2,3-Zn3,2,1 326.7(3); N-Zn4-N 86.5(6), N-Zn-N 91.2(6), Zn1-N3-Zn2 106.7(8), Zn1-N2-Zn3 107.3(6), Zn2-N1-Zn3 108.0(7), übrige Zn-N-Zn 90.7(6), Zn-I-Zn 66.91(7)

[193.0(2) pm^[16] und [ZnMe(NPh₂)]₂ [195(2) pm^[17]] mit KZ = 3 zeigen. Die in 1 und 2 vorliegenden Zn-C-Abstände sind eher denen in ZnMe2-Addukten mit N-Donormolekülen vergleichbar, die im Bereich von 197.5-200.0 pm liegen^[13,18,19]. Demgegenüber sind die Zn-N-Bindungen in 1 und 2 mit 208.8(5) pm etwas länger als in Amido-Komplexen des Zinks wie [ZnMe(NPh₂)]₂ [207.2(9) pm^[17]] und [HZnN(Me)C₂H₄NMe₂]₂ [206(1) pm^[20]], sie sind aber mit den Zn-O-Bindungslängen in dem Heterocuban [ZnMe(OMe)]₄^[6c] mit 207.8(17) pm vergleichbar. Sehr viel kürzer sind die Zn-N-Abstände mit 182.4(14) pm in $Zn[N(SiMe_3)_2]_2^{[21]}$, die als kovalent angesehen werden. Die relativ langen Zn-N-Bindungen in 1 und 2 entsprechen andererseits gut den sehr kurzen P-N-Bindungen von etwa 155 pm, die Doppelbindungen entsprechen^[10]. Da die N-Atome in den Heterocubanstrukturen annähernd sp3-hybridisiert sind, lassen sich die kurzen P-N-Bindungen als polare Bindungsverstärkungen von σ -Bindungen verstehen.

Die Molekülstruktur von **3** ist in Abbildung 3 wiedergegeben. Der verfügbare Datensatz ließ nur eine isotrope Behandlung der C-Atome zu. Durch den Ersatz einer Phosphaniminato-Gruppe durch ein Iodatom kommt es zu einer starken Verzerrung der idealen Heterocubanstruktur, die sich vor allem anhand der Aufweitung dreier Zn-N-Zn-Bindungswinkel auf 107-108° und der kleinen Zn-I-Zn-Winkel von 66.8-67.1° zeigt. Auch die Zn-N-Bindungen reagieren auf die Deformation des Würfelgerüstes mit unterschiedlich langen Abständen, wobei die Zn4-N-Abstände (Zn4 ist nicht mit dem Iodatom verbunden) auf 212 pm gedehnt, alle übrigen auf 202-205 pm verkürzt werden. Die Zn-C-Abstände bleiben praktisch unverändert. Als Folge der µ₃-Brückenfunktion des Iodatoms sind die Zn-I-Bindungen im Mittel mit 297 pm sehr lang. Sie passen aber gut in die Reihe Zn-I_{terminal} mit 256 pm und Zn(µ-I)Zn mit 268 pm, wie sie in der Struktur von [ZnI₂(Me₃SiNPEl₃)]₂^[8] vorliegen. Ähnliche Zn-I-Abstände werden auch von anderen Autoren für Zn-Iterminal und Zn(µ-I)Zn angegeben^[22-26].

Der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie danken wir für großzügige finanzielle Unterstützung. Frau Gertraud Geiseler danken wir für technische Hilfe bei der Erfassung der Röntgendaten.

Tab. 1. K	Kristalldaten und Angaben zu den Strukturlösungen (Meßgerät: Vierkreisdiffraktometer, Enraf-Nonius CAD 4. –	Strahlung:
Mo-K (Graphit-Monochromator. – Strukturaufklärung: Direkte Methoden. – Verfeinerung: Vollmatrix-Verfeinerung an F	² . – Bemer-
	kungen: H-Atomlagen in berechneten Positionen)	

	[Zn(CH ₃)(NPMe ₃)] ₄ (1)	$[Zn(n-C_4H_9)(NPMe_3)]_4$ (2)	[Zn4I(n-C4H9)4(NPMe3)3 (3)
Summenformel	C ₁₆ H ₄₈ N ₄ P ₄ Zn ₄	C28H72N4P4Zn4	C ₂₅ H ₆₃ IN ₃ P ₃ Zn ₄
Gitterkonstanten	a = 1185.6(1) b = 1635.8(1) c = 1655.2(2) pm	a = 1112.9(1) b = 1913.3(2) c = 1041.0(1) pm	a = 1240.0(12) b = 1781(2) c = 1872.3(13) pm $\beta = 106.02(4)^{\circ}$
Anzahl der Formeleinheiten pro Zelle	Z = 4	Z = 2	<i>Z</i> = 4
Zellvolumen [Å ³]	3210.1(4)	2216.6(4)	3974(6)
Dichte (berechnet) [g/cm3]	1.411	1.274	1.483
Kristallsystem, Raumgruppe	orthorhombisch, <i>Pnma</i>	orthorhombisch, P2 ₁ 2 ₁ 2	monoklin, P2 ₁ /c
Meßtemperatur [°C]	-80	-60	-123
Anzahl der Reflexe zur Bestimmung der Gitterkonstanten	25	25	54
Meßbereich, Abtastungsmodus	$\Theta = 2.5-26.3^{\circ},$ ω -Scan	Θ = 2.5-22.6°, ω-Scan	$\Theta = 2.5-22.6^{\circ},$ ω -Scan
Anzahl gemessene Reflexe	3372	4784	5809
Anzahl symmetrieunabhängige Reflexe Anzahl beobachtete Reflexe mit	3372 [$R_{int} = 0.000$]	4222 [$R_{int} = 0.030$]	4526 [$R_{int} = 0.323$]
$I > 2\sigma(I)$ Korrekturen	2667 Lorentz- und Polarisationskorrektur, semiempirische Absorptionskorrektur, $\mu(Mo-K_{\alpha}) = 31.62$ cm ⁻¹	2753 Lorentz- und Polaririsationskorrektur, semiempirische Absorptionskorrektur, $\mu(Mo-K_{\alpha}) = 23.03$ cm ⁻¹	2194 Lorentz- und Polarisationskorrektur, semiempirische Absorptionskorrektur, $\mu(Mo-K_{\alpha}) = 33.57 \text{ cm}^{-1}$
Anzahl der Parameter	153	190	209
Verwendete Rechenprogramme	SHELXTL-Plus ^[27] , SHELXL-93 ^[28]	SHELXS-96[28], SHELXL-92[28]	SHELXS-96 ^[28] , SHELXL-93 ^[28] SHELXTL-Plus ^[27]
Atomformfaktoren, Δf, Δf"	International Tables, Vol. C	International Tables, Vol. C	International Tables, Vol. C
$R = \Sigma F_{\rm O} - F_{\rm C} / \Sigma F_{\rm O} $	0.031	0.054	0.078
wR ₂ (alle Daten)	0.0729	0.1285	0.2006

FULL PAPER

Experimenteller Teil

Die Versuche erfordern Ausschluß von Feuchtigkeit und Sauerstoff und wurden unter trockenem Argon ausgeführt. Die verwendeten Lösungsmittel wurden getrocknet und vor Gebrauch stets frisch destilliert. [ZnBr(NPMe3)]4 erhielten wir in Anlehnung an die beschriebene Synthese von [ZnI(NPMe₃)]₄^[3] durch Reaktion von ZnBr₂ mit überschüssigem Me₃SiNPMe₃ bei 200°C in Gegenwart von Natriumfluorid^[8]. Für die 1R-Spektren stand das Bruker-Gerät IFS-88 zur Verfügung; CsI- und Polyethylen-Scheiben, Nujolverreibungen. Die ¹H- und ¹³C-NMR-Spektren wurden mittels des Bruker-Gerätes AC 300 registriert; chemische Verschiebungen δ relativ zu TMS. Die ³¹P-NMR-Spektren erhielten wir mittels des Bruker-Gerätes AM 400; alle Spektren sind ¹H- und ¹³C-entkoppelt; chemische Verschiebungen & relativ zu externer 85proz. Phosphorsäure.

 $[ZnMe(NPMe_3)]_4$ (1): Zu einer Suspension von 1.09 g (1.16 mmol) [ZnBr(NPMe₃)]₄ in 30 ml n-Hexan tropft man bei 20°C langsam unter Rühren 2.92 ml (4.67 mmol) einer 1.6 м Lösung von Methyllithium in Diethylether und erhitzt anschließend 1 h unter Rückfluß. Man läßt abkühlen, filtriert von ausgeschiedenem LiBr, wäscht dieses mit 2×5 ml *n*-Hexan aus und engt das Filtrat i.Vak. zur Trockne ein: 0.74 g (1) (93%). Zur Herstellung von Einkristallen kühlt man eine gesättigte Lösung auf 4°C ab und stellt den Ansatz 2 d ruhig. – IR: $\tilde{v} = 1297 \text{ cm}^{-1}$ (m), 1283 (s), 1106 (vs), 931 (s), 850 (s), 723 (s), 627 (s), 472 (vs). - ¹H-NMR (300 MHz, C_6D_6 , 25°C): $\delta = -0.57$ (s, ZnCH₃), 1.07 [d, J = 12.2 Hz, NP(CH₃)₃]. - ¹³C-NMR (100 MHz, C₆D₆, 25°C): δ = -11.23 (s, ZnCH₃), 19.57 [d, J = 63.2 Hz, NP(CH₃)₃]. - ³¹P-NMR (162 MHz, C_6D_6 , 24 °C): δ = 13.87 (s). - $C_{16}H_{48}N_4P_4Zn_4$ (682.04): ber. C 28.18, H 7.09, N 8.21; gef. C 27.76, H 6.74, N 7.93.

 $[Zn(nBu)(NPMe_3)]_4$ (2): Man arbeitet wie für 1 beschrieben und verwendet folgende Mengen: 1.26 g (1.34 mmol) [ZnBr(NPMe₃)]₄, 40 ml n-Hexan, 3.41 ml einer 1.6 м Lösung von n-Buthyllithium in n-Hexan. Filtration durch silanisiertes Kieselgel. Ausbeute 1.07 g (94%). Einkristalle wie bei 1 beschrieben. - 1R: $\tilde{v} = 1296 \text{ cm}^{-1}$ (m), 1283 (m), 1111 (vs), 932 (s), 852 (m), 723 (m), 588 (w), 485 (s). $- {}^{1}$ H-NMR (300 MHz, C₆D₆, 25 °C): $\delta = 0.24$ (m), 1.15 [d, J = 12.2 Hz, NP(CH₃)₃], 1.16 (m), 1.67 (tq, J = 7.1Hz), 1.80 (m). $- {}^{13}$ C-NMR (75 MHz, C₆D₆, 25 °C): $\delta = 12.51$ (s), 14.30 (s), 20.11 [d, J = 63.4 Hz, NP(CH₃)₃], 31.57 (s), 34.74 (s). -³¹P-NMR (162 MHz, C₆D₆, 24 °C): δ = 13.55 (s, breitbandentkoppelt). - C₂₈H₇₂N₄P₄Zn₄ (850.32): ber. C 39.55, H 8.53, N 6.59; gef. C 38.73, H 7.96, N 6.49.

 $[Zn_4(nBu)_4I(NPMe_3)_3]$ (3): In Anlehnung an die Vorschrift zur Herstellung von [ZnI(NPMe₃)]₄^[3] werden 3.15 g (9.87 mmol) ZnI₂ mit 0.83 g (19.8 mmol) NaF und 3.1 ml (17.3 mmol) Me₃SiNPMe₃ vermischt und 2 h bei 180°C erhitzt, wobei dem entstehenden FSiMe3 mit Hilfe eines Gasauslaßventils Gelegenheit zum Entweichen gegeben wird. Anschließend kondensiert man überschüssiges Me₃SiNPMe₃ i.Vak. ab. Man extrahiert mit 10 ml CH₂Cl₂, engt auf 5 ml ein und stellt den Ansatz 3 d bei 4°C ruhig. 2.7 g Kristallmasse wird filtriert, mit 2 ml Acetonitril gewaschen, i. Vak. getrocknet, in 15 ml n-Hexan suspendiert und unter Rühren mit 5.4 ml (9.72 mmol) einer 1.8 м Lösung von n-Butyllithium in n-Hexan versetzt. Man erhitzt 1 h unter Rückfluß, filtriert und stellt die Lösung bei 4°C ruhig. Man isoliert 0.7 g (8%) farblose, sauerstoffund feuchtigkeitsempfindliche Einkristalle, die sich an der Luft rasch gelb färben. – IR: $\tilde{v} = 1303 \text{ cm}^{-1}$ (m), 1288 (s), 1070 (vs. br.), 936 (s), 858 (m), 802 (m), 734 (m), 597 (w), 581 (w), 526 (m), 480 (m), 199 (m). $-C_{25}H_{63}IN_3P_3Zn_4$ (887.07): ber. C 33.85, H 7.16, N 4.74; gef. C 30.94, H 6.98, N 3.76; die relativ großen Fehlergrenzen der analytischen Befunde sind durch Kontamination mit Begleitprodukten bedingt.

- * Herrn Prof. Dr. Armin Berndt zum 60. Geburtstag gewidmet.
- [1] H.-J. Mai, R. Meyer zu Köcker, S. Wocadlo, W. Massa, K. Dehnicke, Angew. Chem. 1995, 107, 1349-1350; Angew. Chem. Int.
- Incre, Angew. Chem. 1975, 107, 1549-1550; Angew. Chem. Int. Ed. Engl. 1995, 34, 1235-1236.
 [2] H.-J. Mai, H.-C. Kang, S. Wocadlo, W. Massa, K. Dehnicke, Z. Anorg. Allg. Chem. 1995, 621, 1963-1968.
 [3] S. Aharri, J. M. K. B. Statistical Science of the second science of
- ^[3] S. Abram, U. Abram, R. Meyer zu Köcker, K. Dehnicke, Z. Anorg. Allg. Chem. 1996, 622, 867-872.
- [4] H.-J. Mai, B. Neumüller, K. Dehnicke, Z. Naturforsch., B: Chem. Sci. 1996, 51, 433-436.
- [5] H. Schmidbaur, G. Jonas, Chem. Ber. 1968, 101, 1271-1285.
- [6] [6a] M. L. Ziegler, J. Weiss, Angew. Chem. 1970, 82, 931-932;
 Angew. Chem. Int. Ed. Engl. 1970, 9, 905-906. [6b] M. Ishimori, T. Hagiwara, T. Tsuruta, Y. Kai, N. Yasuoka, N. Kasai, Bull. Chem. Soc. Jpn. 1976, 49, 1165-1166. - [6c] H. M. M. Built. Chem. Soc. Jpn. 1976, 49, 1105–1100. – Co. H. M. M. Shearer, C. B. Spencer, Acta Crystallogr., Sect. B: Struct. Cry-stallogr., Cryst. Chem. 1980, B36, 2046–2050. – $^{[6d]}$ J. M. Bur-litch, S. E. Hayes, G. E. Whitwell II, Organometallics 1982, 1, 1074–1083. – $^{[6e]}$ M. M. Olmstead, P. P. Power, S. C. Shoner, J. Am. Chem. Soc. 1991, 113, 3379–3385. – $^{[61]}$ W. A. Herr-mong, S. Boadonouig, L. Bahm. M. Dark, J. Chemanus, Chem. mann, S. Bogdanovic, J. Behm, M. Denk, J. Organomet. Chem. 1992, 430, C33-C38. - ^[6g] A.-K. Duhme, H. Strasdeit, Z. Naturforsch., B: Chem. Sci. 1994, 49, 119-127.
- [7] H. Schmidbaur, W. Wolfsberger, Chem. Ber. 1967, 100, 1000-1015.
- M. Krieger, Diplomarbeit, Universität Marburg, 1996.
- S. Berger, S. Braun, H.-O. Kalinowski, NMR-Spektroskopie von Nichtmetallen, Bd. 3 (31P-NMR-Spektroskopie), G. Thieme-Verlag, Stuttgart – New York, 1993. ^[10] L. G. Hoard, R. A. Jacobson, J. Chem. Soc. A 1966,
- 1203-1207; A. F. Cameron, N. S. Hair, D. G. Norris, Acta Crystallogr., Sect. B: Struct. Crystallogr., Cryst. Chem. 1974, B30, 221-225; G. W. Adamson, J. C. Bart, J. Chem. Soc. A 1970, 1452-1456; P. Rademacher, Strukturen organischer Moleküle, Bd. 2, Verlag Chemie, Weinheim, 1987.
- [11] J. Weidlein, U. Müller, K. Dehnicke, Schwingungsfrequenzen II,
- G. Thieme-Verlag, Stuttgart New York, 1986. ^[12] L. M. Engelhard, G. E. Jacobsen, W. C. Patelinghug, B. W. Skelton, C. L. Raston, A. H. White, J. Chem. Soc., Dalton Trans. 1991, 2859-2868.
- ^[13] P. O'Brien, M. B. Hurtshouse, M. Motevalli, J. R. Walsh, A. C. Jones, J. Organomet. Chem. 1993, 449, 1-8.
- ^[14] Weitere Einzelheiten zu den Kristallstrukturuntersuchungen können beim Fachinformationszentrum Karlsruhe, D-76344 Eggenstein-Leopoldshafen, unter Angabe der Hinterlegungsnummern CSD-405595 (1), -405594 (2) und -405596 (3) angefordert werden.
- ^[15] L. Pauling, The Nature of the Chemical Bond, Cornell University Press, Ithaca, 1960.
- ^[16] R. E. Rundle, D. H. Olson, G. D. Stucky, G. R. Engebretson, Acta Crystallogr. 1963, 16, A71; A. Almenningen, T. U. Helgaker, A. Haaland, S. Samdal, Acta Chem. Scand., Ser. A 1982, A36, 159-166.
- ^[17] N. A. Bell, H. M. M. Shearer, C. B. Spencer, Acta Crystallogr, Sect. C: Cryst. Struct. Commun. 1983, C39, 1182–1185.
- ^[18] J. Dekker, J. Boersma, L. Fernholt, A. Haaland, A. L. Spek, Organometallics 1987, 6, 1202-1206.
- ^[19] M. B. Hursthouse, M. Motevalli, P. O'Brien, J. R. Walsh, A. C. Jones, Organometallics 1991, 10, 3196-3200.
- ^[20] N. A. Bell, P. T. Moseley, H. M. M. Shearer, C. B. Spencer, Acta Crystallogr., Sect. B: Struct. Crystallogr., Cryst. Chem. 1980, B36, 2950-2954.
 ^[21] A. Halada, K. H. Harry, P. D. Davier, Lucar, Chem. 1084, 22
- ^[21] A. Haaland, K. Hedberg, P. P. Power, Inorg. Chem. 1984, 23, 1972 - 1975
- ^[22] P. Richard, A. Boulanger, J.-F. Guedon, W. J. Kasowski, C. Bordeleau, Acta Crystallogr., Sect. B: Struct. Crystallogr., Cryst. Chem. 1977, B33, 1310-1316.
- ^[23] A. A. Freer, G. McDermott, J. Melville, D. J. Robins, Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1993, C49, 2115-2117.
- ^[24] E. Libertini, K. Yoon, G. Parkin, Polyhedron 1993, 12, 2539-2542
- ^[25] M. L. Werk, G. Chapuis, F. J. Zúñiga, Acta Crystallogr., Sect. B: Struct. Sci. 1990, B46, 187-192.

- [^{26]} N. Bricklebank, S. Godfrey, C. A. McAuliffe, A. G. Mackie, R. G. Pritchard, J. Chem. Soc., Chem. Commun. 1992, 944-945.
 [^{27]} G. M. Sheldrick, SHELXTL-Plus, Release 4.2 for Siemens R3 Crystallographic Research Systems, Siemens Analytical X-Ray Instruments, Inc., Madison, Wisconsin, USA, 1990.
- ^[28] G. M. Sheldrick, SHELXL-92, -93, SHELXS-96, Programme zur Verfeinerung von Kristallstrukturen, Göttingen 1992, 1993, 1996.

[96149]